skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Subramanian, Ramachandran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The use of machine learning techniques to expedite the discovery and development of new materials is an essential step towards the acceleration of a new generation of domain-specific highly functional material systems. In this paper, we use the test case of bulk metallic glasses to highlight the key issues in the field of high throughput predictions and propose a new probabilistic analysis of rules for glass forming ability using rough set theory. This approach has been applied to a broad range of binary alloy compositions in order to predict new metallic glass compositions. Our data driven approach takes into account not only a broad variety of thermodynamic, structural and kinetic based criteria, but also incorporates qualitative and descriptive attributes associated with eutectic points in phase diagrams. For the latter, we demonstrate the use of automated machine learning methods that go far beyond text recognition approaches by also being able to interpret phase diagrams. When combined with structural descriptors, this approach provides the foundations to develop a hierarchical probabilistic predication tool that can rank the feasibility of glass formation. 
    more » « less
  2. Abstract ChemMLis an open machine learning (ML) and informatics program suite that is designed to support and advance the data‐driven research paradigm that is currently emerging in the chemical and materials domain.ChemMLallows its users to perform various data science tasks and execute ML workflows that are adapted specifically for the chemical and materials context. Key features are automation, general‐purpose utility, versatility, and user‐friendliness in order to make the application of modern data science a viable and widely accessible proposition in the broader chemistry and materials community.ChemMLis also designed to facilitate methodological innovation, and it is one of the cornerstones of the software ecosystem for data‐driven in silico research. This article is categorized under:Software > Simulation MethodsComputer and Information Science > ChemoinformaticsStructure and Mechanism > Computational Materials ScienceSoftware > Molecular Modeling 
    more » « less